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A Practical Technique for Designing
Multiport Coupling Networks

W. Preston Geren, Member, IEEE, Clifford R. Curry, Student Member, IEEE,
and Jonny Andersen, Senior Member, IEEE

Abstract—A new technique is proposed for designing a passive
lossless coupling network transforming any prescribed .V by .\
symmetric immittance matrix into a corresponding \" by V' diag-
onal immittance matrix. A principal application of the technique
is in the design of matching networks between .\ uncoupled
resistive source impedances and planar antenna arrays. The tech-
nique is based upon repeated applications of Givens rotations [1],
which can be implemented by a cascade connection of four-port
directional couplers. Thus, both in the design technique and in the
subsequent hardware implementation, our approach represents
a significant departure from past design procedures. Existing
synthesis methods involve the use of multiwinding transformers,
which are impractical at microwave frequencies.

1. INTRODUCTION

HE realization of N-port immittance matrices was solved

by Carlin with ideal multiwinding transformers in 1955
[2]. Later, Youla extended the method to systems described
by S-matrices [3]. In both cases the implementation required
using ideal multiwinding transformers, which are impracti-
cal as microwave components. In this paper, an alternative
approach is proposed based upon repeated applications of
Givens rotations. The subsequent implementation 1s made with
cascaded four-port directional couplers. The motivation for
designing such networks is to optimize antenna array feeds
with respect to impedance matching, bandwidth, and pattern
constraints such as directivity and sidelobe levels [4], [5].

II. ANTENNA ARRAYS

Reactively loaded antenna arrays have been analyzed in
the literature; however, the loading has been restricted to
special cases. Particularly. the case of isolated loads attached
across each antenna port, together with either a parallel or a
series transmission line feed, have received extensive treatment
[4], [5]. Such topologies are not sufficiently general to enable
a designer to handle complex loads associated with a full
N x N symmetric immittance matrix. The technique described
in this paper, on the other hand, provides a general design
procedure for realizing the full multiport feed network in order
to optimize array performance.

In the general case. the feed network for an N-element array
consists of a lossless interconnecting network with N ports
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Fig. 1. General antenna feed configuration.

attached to the antenna elements and N ports terminated in
uncoupled source resistances. as shown m Fig. 1.

Fig. 1 also shows the relationship between the source
current, I .. and the current vector at the antenna ports, L.
(The latter defines the array aperture distribution, assuming
a monopole array.) Since I and [, are related through
network equilibrium equations. one may solve for the required
source currents to provide the desired phase and amplitude
taper over the array aperture.

An obvious application of this technique to an array of
moderate size is illustrated in Fig. 2, i.e., a conjugate match
to the antenna impedance.

The coupling networks, A and B, are lossless multiport
networks that transform the isolated reactive and resistive
series elements into the indicated load impedance at the
antenna. As will be shown. the feed network in Fig. 2 yields
an impedance matrix Z,, at the sources that is real, diagonal,
and matched to the impedances R,. Hence, the match at center
frequency (where Zyoap = Z{yr) is ideal and independent
of aperture distribution.

I1I. DESIGN PROCEDURE

A. Design Algorithm

The design to be mntroduced leads to coupling structures
composed of reactances and multiport components described
by S-matrices of the form

. 0 4
b'a:(Ai 0) M

where 4 is a real N by N matrix whose columns are
orthogonal vectors and A" is its transpose. As a preliminary to
the design procedure, we present an important property about
networks whose S-matrices are of this form. This property
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Fig. 2. Terminated conjugate match feed network.
is central to our design procedure and referred to below as
Theorem 1.

Theorem 1: The N x N scattering matrix, S,,, of a 2V
port network, described by S4 as in (1), and terminated with
an N port network, described by S’ as shown in Fig. 3, can
be expressed as

Sin = AS'A*. 2

Furthermore, if A = (€}---€,) is an N x N rectangular
matrix composed of an orthonormal set of real vectors, then
the corresponding impedance matrices are related by

Zm = AZ'A". 3

A proof of Theorem 1 is readily obtained by following the
discussion in Newcomb [6].

At this point it should be mentioned that the time delay of
wave propagation at microwave frequencies is not negligible,
and that S-matrices of practical networks include a multi-
plicative phase term, e~/®. The familiar scalar expression for
translation of a terminating impedance through a transmission
line of electrical length ¢ can be expressed as a matrix product
directly. The normalized impedance seen at the input of the
line is expressed in terms of the termination as

Zin = (Zterm €08 ¢ + jIsin ¢)(I cos ¢ + jZierm Sin $)t
where
Zierm = AZ' A" (4)

Thus, if an S-matrix in the form of purely real elements
(corresponding to electrical lengths of ¢ = 0), then (3) follows.
On the other hand, if the S-matrix has purely imaginary
elements, (corresponding to ¢ = %), then (4) takes the form

Zn = AY' A &)

where Y/ = Z'~1. In the paper, we will use (3), although (5)
could be used for a dual derivation.

The design procedure can now be formulated.

Consider a specified N x N positive real, symmetric
impedance matrix Z;, = R, + jXin, as shown in Fig. 4. The
design objective is to implement the coupling network between
the resistive terminations R - - - Ry and Zi,. Since i, is real
and symmetric. it may be diagonalized by an orthogonal matrix
A, where the columns are the N eigenvectors of Xj,. The
matrix A is used (as indicated in (1)) to design the coupling
network A in Fig. 4. From (3), Rin+7 X\, = AZ' A?, where Z'
is the impedance matrix of the network inside the dotted lines.
Equating imaginary parts and solving for X’/ (the imaginary
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Fig. 4. Definitions used in the design procedure.

part of Z') yields X' = A'X;,A. X' is a diagonal matrix
corresponding to the series reactive elements of Fig. 4.

R', the real part of Z’, is determined as R’ = A'R;,A.
This matrix is positive real and symmetric. The matrix can
be diagonalized by a second orthogonal matrix B, where
the columns of B are the eigenvectors of R’. The matrix
B is used to design the coupling network B of Fig. 4. The
resistances terminating Network B are the eigenvalues of R’
corresponding to the eigenvectors, which make up the columns
of B.

So far the derivation follows an existing design procedure
[2] that realizes the coupling network with multiwinding trans-
formers (impractical at microwave frequencies). Our novel
approach utilizes repeated applications of Givens rotations as
shown in the Appendix. The Appendix furthermore shows how
these rotations can be implemented by at most N(N — 1)/2
cascaded four-port directional couplers.

Our technique thus represents a new, practical approach
to the design of lossless matching networks at microwave
frequencies. To our knowledge, no other procedure for de-
signing practical coupling networks matching arbitrary N by
N admittance matrices to diagonal admittance matrices at
microwave frequencies has been documented in the literature.

The design procedure for realizing an arbitrary passive
impedance matrix Z,, = Ri, + jXin may thus be summarized
as follows:

1) Compute the eigenvalues and eigenvectors of Xj.

2) Design the transformation network whose scattering
matrix S, and series reactive elements X; correspond
to the eigenvectors and eigenvalues of X,j.

3) Compute the eigenvalues and eigenvectors of R’ =
A'Ri A.

4) Design the transformation network whose scattering
matrix is Sp and resistive elements, R; corresponding
to the eigenvectors and eigenvalues of R’
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Fig. 5 Four-port directional couplers

B. Design of Lumped-Element Four-Port Directional Couplers

In order to implement the design. one needs directional
couplers with an S-matrix of the form

{0 4 . _ (518 S
b-—(Af 0) with A-(SB Sy ) (6)

Lumped-element directional couplers with purely imaginary
A-matrices have been shown in |7] to have the topology of
Fig. 5.

A cascade connection of the two networks shown in Fig. 5
implements S-matrices of the form of (6) in which A is
purely real. To see this, consider S-matrices of the form of (6)
describing lossless networks. The constraints on the phases of
the scattering coefficients of such networks are

2p1s = pry + daz+ (2k+ L)w. K any integer.  (7)

If, in addition, the circuit parameters are constrained to insure
Soy = =S54, then

P13 = dra F AT

and

A= (/Jﬂ')n < 1= |Sl‘i‘2

(—=1)¥1514] )
(—1)% |91 - ®

V1= 15142

For the networks shown in Fig. 5, S1, = — by where by is the
normalized susceptance linking ports 1 and 4. Using Fig. 5(a)
the A-matrix becomes

N, = l( cos(dq)

—xin(fy)

sin(d))
cos(ly) J

For Fig. 5(b), the A-matrix becomes
cos(6y)

. sin(#s)
Ay = (_5111(92) cos(f#q) )

Cascading the two circuits yields the desired S-matrix
~ 0 flub
bah - (AZb 0 >

sin(fy + f2)
cos(f) +02) )

with
Lo cos(fy + 02)
Agh = _Sjn(ﬁl + 92)

Hence, one may construct lumped-element four-port direc-
tional couplers having the form of (6) and thereby build up

the S-matrix needed to transform the terminating impedances.
Although the reason for cascading the two circuits was to
provide a real S-matrix, the resulting circuit has an extra
branch whose additional degrees of freedom may be used to
increase the bandwidth [7].

V. DESIGN EXAMPLE OF COUPLING NETWORK
FOR A FOUR-ELEMENT LINEAR ARRAY

In order to illustrate the realization technique with a mean-
ingful example, a network will be designed that provides a
conjugate match to a specified antenna admittance matrix.
For the antenna array, we choose four slots of 0.7\ spacing
oriented broadside to the axis of the array. For a stripline-
fed cavity-backed slot, one can adjust the feed-point to match
the feedline characteristic impedance to the slot impedance at
resonance. This is equivalent to coupling the 4 x 1 antenna
impedance matrix to the four feed lines through a wideband
transformer.

Assuming each slot has an identical aperture source dis-
tribution, the admittance matrix has Toeplitz symmetry. i.e.,
the elements of the admittance matrix have the form: Y,, =
Y,y 41 fore, ) < N —1 and all self-terms are identical. The
inverse of the Toeplitz (symmefric) matrix is centrosymmetric,
i.e., it is symmetric about the main and cross diagonals (a
persymmetric matrix has oanly the latter symmetry). Cen-
trosymmetry reduces the number and complexity of directional
couplers required to diagonalize the impedance matrix.

The conjugate load that matches the four slot antenna at
the center frequency of 3 GHz is described by the following
Toeplitz matrix normalized to the characteristic admittance of
the feed line ’

1.0000  —.3400 0820  .0820
Vo —.3400  1.0000 —.3400  .0820
WTTL08200 —.34000 1.0000  —.3400
0820 0820 —.3400  1.0000
0 0060 1600 —.0900
/ 0060 0 0060 1600 ©)
S 16000060 0 0060
—.0900 1600 .0060 0

Since our design procedure for realizing this load is in terms
of Z,,. Y., must first be inverted, producing the normalized
impedance matrix

1.1099
3796

3796
1.2214
—.0105 3698
—.1349 —.0105

—.013+ —.0575
—.0575 3
—.2060 —.1
—.0250 -.2

—.0105
3698

—.1349
—.0105
1.2214 3796
3796 1.1099
—.2060 —.0250
—.1529  —.2060
29 —.0576 —.0875
—.0575 —.0134

ZlIl =

+4 (10)

)
)

The four step design procedure yields the following.

Step 1: Coupling network A4, described by &4, can be
computed from an eigenvalue analysis of the reactive part
of the impedance matrix. It should have an A matrix of the
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eigenvectors of the imaginary part of Z,, as shown in (1)

0.4153 0.5638 —0.5723 0.4268

A= 0.5723 —0.4268 0.4153 0.5638 (11)
0.5723 0.4268 0.4153 —0.5638
0.4153 —-0.5638 —0.5723 —0.4268

The series reactances between network A and network B are
given by the eigenvalues

X; = —.4016
X, = —.1008
. (12)
X3 = +.1529
X, = +.2078.

Step 2: The scattering matrix S4 is readily obtained from
(6), generating

0 A} (13)

Sa = {At 0
In order to design network A, the upper right-hand corner

of this matrix must be factored into six matrices. Using the
method of the Appendix the result is

367

1.0000 0 0 0

\ 0 1.0000 0 0

1 0 0 —o0s5978 08016 | (P
0 0  —0.8016 —0.5978

Each of the six matrices can be realized with one four-port
directional coupler and two straight through connections. For
example, the scattering matrix of the network corresponding
to the second factor on the right-hand side of (14) is as shown
in (15) at the bottom of the page. The network realization of
the above scattering matrix is shown in Fig. 6..

Six such networks, cascaded, make up the network A of
Fig. 4.

Step 3: After network A is realized, the real part of the
input impedance can be realized by solving for the eigenvalues
and eigenvectors of

1.7295
0.0000
0.1785
0.0000

0.1785
0.0000
0.8367
0.0000

0.0000
0.7262
0.0000
0.2951

0.0000
0.2951
0.0000
1.3702

A'RinA = (16)

The matrix has many zero elements because of the centrosym-
metry of the original impedance matrix. The upper right-hand

r0.4153 0.5638 —0.5723 0.4268 corner of the scattering matrix for network B is given by the
4 0.5723 —0.4268 0.4153 0.5638 eigenvectors of the matrix in (16). The result is
T 10,5723 0.4268  0.4153 —0.5638
104153 —0.5638 —0.5723 —0.4268 -0.9820  0.1890  0.0000  0.0000
05873 —0.8094 0 0 B— 0.0000  0.0000 -0.3625 —0.9320 an
0.8094  0.5873 0 0 —0.1890 —-0.9820  0.0000 —0.0000
= 0 0 1.0000 0 0.0000 —0.0000 -0.9320  0.3625
L 0 0 0 1.0000 Step 4: The terminating resistances of the coupling network
r0.7773 0 —0.6291 0 7 B are specified by the following eigenvalues
y 0 1.0000 0 0
0.6291 0 0.7773 0 Ry = 1.7639
L 0 0 0 1.0000 ] R, = .8023
0.9097 0 0 —0.4153] Ry = 1.4850 (18)
y 0 1.0000 0 0 R — 6114
0 0 1.0000 0 4= :
:0'4153 0 0 0-9097 The final realization is shown in Fig. 7. The matrix in (17)
1.0000 0 0 0 is factored to find the division ratios for the directional
X 0 ~0.9008  —0.4342 0 couplers. Following the procedure of the Appendix leads to
0 0.4342  —0.9008 0 the following six rotation matrices, whose product equals B
L O 0 0 1.0000
r1.0000 0 0 0 —1.0000 0 0 0
y 0 0.7848 0 0.6198 b= 0 —1.0000 0 0
0 0 1.0000 0 0 0 1.0000 0
L 0 —0.6198 0 0.7848 0 0 0 1.0000
r 0 0 0 0 0.7773 0 —0.6291 0 1
0 0 0 0 0 1.0000 0 0
0 0 0 0 0.6291 0 0.7773 0
0 0 0 0 0 0 0 1.0000 (15)
0.7773 0 0.6291 0 0 0 0 0
0 1.0000 0 0 0 0 0 0
—0.6291 0 0.7773 0 0 0 0 0
L 0 0 0 1.0000 0 0 0 0
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3 7
\ / Fig 7 A realization of the coupling network whose admittance at ports
4 8 one—four is (9)
The eigenvector matrix A was factored as
0.4153 —0.5723 —0.4268 —0.5638
Fig 6. A 444 port network. consisting of a directional coupler and two 0.5723 0.4153 = —0.5638 01268
sueh conmeetion. ' ¢ 0.5723  0.4153 05638 —0.4268
0.4153 —0.5723  0.4268  0.5638
r 0.9820 0 0.1890 0 =4 =41 x A2 x A3 x A4
o 0 1.0000 0 0 where
—0.12390 0 0.9820 0O 1.0000 0 0 0
L0 0 o 1 0 07071 —0.7071 0
L0000 0 0 0 AL=1 4 o7m o1 0
o | 0 Looo 0 0 L 0 0 0 1.0000
0 0 Loooo 0 f0.7071 0 0 —0.70717
L 0 0 0 1.0000 L 0 1.0000 0 0
r1.0000 0 0 0 Az= 0 1.0000 0
R v L.ooov 0 [0.7071 0 0 0.7071 ]
0 -Lo0000 0 0 r0.5873  —0.8094 0 0 7
10000 0 0 0 A3=1"" 0 10000 0
o 0 1.0000 0 0 L o 0 0 1.0000 J
0 0 1.0060 0 r1.0000 0 0 0
L 0 0 0 10000 0 1.0000 0 0
r1.0000 0 0 0 A=1y 0 0.7973  —0.6035
o | O 10000 0 0 1 (9 Lo 0 06035  0.7973]
0 0 0.3625 —0.9320
L O 0 —0.9320 0.3625 The eigenvectors and eigenvalues of A*R,, A were found. and
the matrix of eigenvectors BB was factored as
0.9820 —0.1890 0 0
0.1890 0.9820 0 0
Note that the identity matrices are implemented as simple 0 0 09320 ‘0'3?25
straight through connections and therefore not shown in Fig. 7. X U 0.3625 0.9320
The scattering parameters of each of the six directional =D =Bl x B2
couplers are embedded in the appropriate submatrices of (19)  where
(see Fig. 6.) In Fig. 7. the six directional couplers of Net A4 are [0.9820  —0.1890 0 0 7
labeled A1 through A6. and the directional couplers of network Bl = 0.1890  0.9820 0 0
D are labeled B1 through B6. (B3 and B5 are missing since 0 0 1.0000 0
they correspond to identity matrices in (19).) L 0 0 0 1.0000 4
When the impedance specification has centro-symmetry [8], r1.0000 0 0 0
as in this example, one can reduce the number of directional B2 — 0 1.0000 0 0
couplers used in the realization. To demonstrate this point, 0 0 09320 —0.3625
the impedance of (10) is realized using only six couplers. i.e., L 0 0 0.3625  0.9320 ]

one half of those required in an arbitrary 4 x4 matrix lacking

centrosymmetry. The corresponding reduced design is shown in Fig. 8.
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Fig. 8. Realization of Fig. 7 coupling network exploiting symmetry.
-] gu L4 05I Eo
T~
Port 1 c2 L5 Port 3
—]— i
o L3 L7
Ct It i 5
N 1
Py I M PY
K L6
Port 2 i c3 . c7 1. Port 4
5 Ir
Fig. 9. Schematic diagram of the four-port couplers used in Fig. 8.
TABLE 1
ELEMENT VALUES FOR THE FOUR-PART COUPLERS.
CAPACITANCE IN pF, INDUCTANCE IN nH
A1, A2 A3 A4 B1 B2

L1 0.980 1.215 0.843 0.589 0.664
L2 0.406 0.394 0.419 0.487 0.455
L3, L7 1.39 1.17 1.67 5.59 2.88
C1,C5 2.03 2.41 1.69 0.503 0.978
C2,C3 4.90 4.73 5.03 5.28 5.21
L4 0.693  0.584 0.833 2.80 1.44
C4 4.06 4.82 3.38 1.01 1.96
L5,L6 0574 0.596 0.560 0.533 0.540
C6 6.93 7.14 6.72 5.78 6.19
C7 2.87 2.32 3.34 4.78 4.24

V. CIRCUIT SIMULATION AND DESIGN VERIFICATION

The block diagram of Fig. 8 can be realized by designing
the six four-port couplers, Al, A2, A3, A4, B1, and B2.

To demonstrate the validity of the design procedure, the
methods of [5] were followed to design the six directional
couplers for operation at the center frequency of 3.0 GHz. The
couplers were designed with lumped rather than distributed
elements in order to insure the smallest possible physical size
for the overall circuit. A characteristic impedance of 10 ohms
was chosen for the circuit. This allows for practical values of
lumped inductors and capacitors. By altering the feed point of
the antenna slots, the antenna can be matched to the coupler
at 3.0 GHz. The 50-ohm impedance of the source circuitry
can be matched to the necessary terminating resistance of the
circuit with quarter wave matching transformers. Each coupler
is realized as shown by the schematic diagram of Fig. 9, and
the component values for the couplers are given in Table 1.

Note that Fig. 8 shows impedances normalized to one ohm,
whereas element values listed in Table I and below assume
a ten ohm characteristic impedance. Element values for the

series admittances of Fig. 8 from top to bottom.

X, is capacitive with a value of 13.2 pF.
X} is inductive with a value of 81.1 pH.
X, is inductive with a value of 110 pH.

X is capacitive with a value of 52.6 pF.

The program TOUCHSTONE was used to determine the
frequency characteristics of the S-matrix of the lossless eight
port network consisting of the six four-port couplers and the
four reactances.

The admittance of the previously mentioned slot array
antenna was calculated over a 10% bandwidth around the
center frequency, using a separate electromagnetic simulation
program. From this data the S-matrix was computed.

To investigate the performance of this coupling network in a
transmitting mode, we consider a network connection as shown
in Fig. 2. The excitation can be represented as four isolated
voltage sources, each with a 50-Q series resistance. In the
simulation, we assume that the impedance transformers used
to match the excitation characteristic impedance to the coupler
circuitry have sufficient bandwidth that their contribution to
the frequency response of the circuit is negligible.

Note that a perfect coupling network would extract the
maximum power pos:)sible from each of the sources, which in

this case would be %&ZM(} watts, where Vrs is the rms voltage
of the source and Z; = 50 ohms. The coupling network
has been designed for a perfect match at 3 GHz, but will
develop mismatch as the frequency varies about this point. To
quantify the bandwidth performance of the coupling network,
we considered five different voltage excitation vectors. These
excitations are: each of the four-ports being driven separately
by a one volt source and all four-ports driven together by four
co-phasal one-half V sources, all in phase.

As Fig. 10 shows, the variation in power flow over a 10%
bandwidth is different for each of the five excitations, ranging
from less than 1-5dB. A future study is planned to investigate
the sensitivity of the power flow to variations in the component
values of the couplers.

V1. CONCLUSION

The paper develops a new algorithm for the design of
lossless multiport matching networks based upon repeated ap-
plications of Givens rotations. The design technique parallels
the procedure proposed by Carlin and Youla, but differs in its
implementation by avoiding multiport transformers, which are
impractical at microwave frequencies.

To illustrate the procedure. a coupling network for a four-
element antenna array has been designed with six directional
couplers, in order to maximize the power flow from four
isolated transmitters into the antenna. Lumped elements were
used in the design of the couplers. To validate the design,
the antenna-coupler system has been simulated and its per-
formance assessed over a 10% bandwidth. We expect the
impressive bandwidth performance of our example to be
the case with most designs obtained by this novel design
methodology.
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Fig. 10. Power from vartous source distributions.

APPENDIX
PROOF THAT NO MORE THAN N(N — 1)/2
DIRECTIONAL COUPLERS ARE NEEDED TO REALIZE
EACH OF THE 2N BY 2N NETWORKS A AND B

It will be shown that interconnections of networks of
directional couplers. each with two input ports and two output
ports, described by S-matrices of the form

0 0 cos(p)  sin(yp)
. 0 0 —sin(p) cos(p)
S = cos()  —sin{yp) 0 0 (AD
sinp) cos(y) 0 0

can produce a 2/N-Port network with S-matrices of the form
needed for networks 4 and B.

S.4 and Sg, describing networks .4 and I3, respectively, will
be realized as cascades of N + N port networks, an example
of which is shown in Fig. 6, consisting of one 2 + 2 port
directional coupler and (N —2)+ (N —2) through connections.

The S-matrix of the network of Fig. 6 is of the form of
(1. The A-matrix is diagonal for the row and columns where
the ports are through, and has the entries of (Al) in the rows
and columns corresponding to the directional coupler. For the
example of Fig. 6, as in (A2) shown at the bottom of the page.
Since the NV 4+ N port networks have an S-matrix of the form
of (1). the S-matrix of several such networks in cascade can
be shown to be

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44, NO 3, MARCH 1996

Where Aot 1S the product of individual 4 matrices of the
N + N port networks

fltota.l = fllfl? T An (A4)

Our design strategy is to find a decomposition of the upper
right-hand quadrant of S,y or Sp into a product of matrices
that are like the upper right-hand quadrant of (A2).

In the following, we provide this decomposition. by showing
that, for an S-matrix of the form in (A3), the N by N
real orthogonal matrix A;,, may be expressed as a product
of N(N — 1)/2 matrices. each of which only involves two
coordinate axes.

Consider the two-dimensional (2-D) unit vector in the r-
y plane. p(#) = cos(8)r + sin(f)y, where 7 and g are unit
vectors along the x- and y-axes. Such an arbitrary unit vector
may be rotated to lie along the r-axis with the orthogonal
transformation matrix R(—#6), where

B sin(#)
R(‘H) - (—Sill((g) COS(0)>

1N [ cos(f) sin(f) \ [cos(8)

(()) N (—sin(ﬂ) (‘()S(H)) (Sin(ﬁ) )
Now suppose we have an N-dimensional unit ¢ vector and
select an arbitrary 2-D subspace containing a nonnull projec-
tion of & Applying a matrix of the form shown in (Al). one
can rotate the projection of & to lie along either axis of the
subspace. By repeated rotations (for a total of at most N — 1).
one can transform an arbitrary vector to lie along any of the
N axes in the space.

Now consider the N by N real orthogonal matrix A. Since it
is orthogonal, .4 may be expressed in terms of an orthonormal
set of column vectors, i.e.. A = (¢1€y---en_1€n). As has
been shown, the first column vector may be rotated to the
first axis (a one in the first row and zeros elsewhere) by
multiplication with N — 1 rotation matrices G(1, m.—01,,),
where G{1,m.—01,,) is an N by N unit matrix, except
for the 1,m subspace, which has the form of (AS5). These
operations are known as Givens rotations [1]. Application of
G(1, m.—0,,,) annihilates the mth element in the first column
of A.

Hence we have' &1 = [[o,_y G(L.m. —b1,)& with ¢/
the unit vector along the first axis, having a one in the first
row and zeros elsewhere. But the product of two orthogonal

cos(f)

(AS)

0 p;
szhal = |i ¢ 4T6td1 :i (A3) I Note that the matrices are multiplicd from left to right, starting with the
“ttotal first index of the product sign.
r 0 0 0 0 cos(p) 0 sin{p) 07
0 0 0 0 0 1 0 0
0 0 0 0 —sin(p) 0 cos(yp) O
0 0 0 0 0 0 0 1
S = . 2
i coslp) O —sin(p) O 0O 0 0 0 (A2)
0 . 1 0 0 0 0 0 0
sin(p) 0 cos(p) O 0 0 0 0
L O 0 0 1 0 0 0 0.
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matrices is also orthogonal, so that the transformed vectors
g = Hfﬂ:N G(1,m, —01,,)€; form an orthonormal set.

Since only €’; has a nonzero entry in the first row, the
transformed A has the form

10 - 0
aa=|" B (A6)
1
0
where
2
G =[] Gtm,—b1n).

m=N
Repeating the process on the N — 1 dimensional subspace
corresponding to A; with at most N — 2 rotations one can
rotate €', to lie along the second axis, so that

10 - 0
01 - 0
GsG1A=]0 0 (A7)
Ay
0 0
where
3
Gz = H G(Za m, _92m)'
m=N

Continuing through the remaining subspaces, one finally ob-
tains ‘

1 1 i1
H' Gi A= H H G(”” m, —oi’rn)A =1 (AS)
i=N-1 i=N—-1m=N

But R(#)R(—0) = I, so that (A8) handily inverts to the form

N-1 N )
A= I] GG.m.0im)

1=1 m=1+1
which is the desired result.
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