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Abstract—A new technique is prgposed for designing a passive
ksssless coupling network transforming any prescribed Y by .1-
symmetric immittance matrix into a corresponding .1- by Y diag-
onal immittance matrix. A principal application of the technique
is in the design of matching networks between .Y uncoupled
resistive source impedances and planar antenna arrays. The tech-
nique is based upon repeated applications of Givens rotations [1],
which can be implemented by a cascade connection of four-port
directional couplers. Thus, both in the design technique and in the
subsequent bardware implementation, our approach represents
a significant departure from past design procedures. Existing
synthesis methods involve the use of multiwinding transformers,
which are impractical at microwave frequencies.

I. INTRODUCTION

T HE realization of N-port immittance matrices was solved
by Carlin with ideal multiwinding transformers in 1955

[2]. Later, Youla extended the method to systems described
by b-matrices [3]. In both cases the implementation required
using ideal multiwinding transformers, which are impracti-
cal as microwave components. In this paper, an alternative

approach is proposed based upon repeated applications of
Givens rotations. The subsequent implementation ]s made with
cascaded four-port directional couplers. The motivation for
designing such networks is to optimize antenna array feeds
with respect to impedance matchmg, bandwidth, and pattern
constraints such as directivity and sidelobe levels [4], [5].

II. ANT%NNA ARRAYS

Reactively loaded antenna arrays have been analyzed in
the literature; however. the loading has been restricted to
special cases. Particularly. the case of isolated loads attached
across each tintenna port, together with either 1 parallel or a
series transmission line feed, have received extensive treatment
[4], [5]. Such topologies are not sufficiently general to enable
a designer to handle complex loads associated with a full
V x N symmetric irnmittance matrix. The technique described
in this p~per, on the other hand, provides a general design
procedure for realizing the full multiport feed network in order
to optimize array performance.

In the general case, the feed network for an IV-element array
consists of a lossless interconnecting network with IV ports
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attached to the antenna elements and IV ports terminated in
uncoupled source resistances, as shown In Fig. 1.

Fig. 1 also shows the relationship between the source
current, 1.,., and the current vector at the antenna ports, la,,t.

(The latter defines the array aperture distribution, assuming
a monopole array. ) Since Is, and I.,,t are related through
network equilibrium equations. one may solve for the required
source currents to provide the desired phase and amplitude
taper over the array aperture.

An obvious application of this technique to an array of
moderate size is illustrated in Fig. 2, i.e., a conjugate match

to the antenna impedance.

The coupling networks, .-i and B, are lossless multiport
networks that transform the isolated reactive and resistive
series elements into the ind~cated load impedance at the
antenna. As will be shown. the feed network m Fig. 2 yields
an impedance matrix Z,,l at the sources that is real, diagonal,
and matched to the impedances R,. Hence, the match at center
frequency (where ZL().l~ = Z~~T) is ideal and independent

of aperture distribution.

111. DESIGN PROCEDURE

A. Desigji Algorithm

The design to be introduced leads to coupling structures
composed of reactance and multiport components described
by S-matrices of the form

()o .!
‘[’ = .-l~ o

(1)

where .4 is a real N by N matrix whose columns are
orthogonal vectors and .-lt is its transpose. As a preliminary to
the design procedure, we present an important property about
networks whose S-matrices are of this form. This property
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is central to our design procedure and referred to below as
Theorem 1.

Theorem 1: The N x N scattering matrix, S,m, of a 2N
port network, described by S.A as in (1), and terminated with
an N port network, described by S’ as shown in Fig. 3, can
be expressed as

Sin = AS’At. (2)

Furthermore, if A = (Fl ~. . &) is an N x N rectangular
matrix composed of an orthonormal set of real vectors, then
the corresponding impedance matrices are related by

Z,n = AZ’A”. (3)

A proof of Theorem 1 is readily obtained by following the
discussicm in Newcomb [6].

At this point it should be mentioned that the time delay of
wave propagation at microwave frequencies is not negligible,
and that S-matrices of practical networks include a multi-
plicative phase term, e–~d. The familiar scalar expression for

translation of a terminating impedance through a transmission
line of electrical length # can be expressed as a matrix product
directly. The normalized impedance seen at the input of the
line is expressed in terms of the termination as

Zin = (Zerm Cos @ + jlsin @)(l cos @+ jzterm sin 4)-1

where

Z~,,~ = AZ’At. (4)

Thus, if an S-matrix in the form of purely real elements
(corresponding to electrical lengths of @= O), then (3) follows.
On the other hand, if the S-matrix has purely imaginary
elements, (corresponding to ~ = ~), then (4) takes the form

Z,n = AY’At (5)

where Y’ = Z’– 1. In the paper, we will use (3), although (5)

could be used for a dual derivation.
The design procedure can now be formulated.
Consider a specified N x N positive real, symmetric

impedance matrix Zin = Rin + jXin, as shown in Fig. 4. The
design objective is to implement the coupling network between
the resistive terminations RI . . RN and Zin. Since Xin k real
and symmetric, it may be diagonalized by an orthogonal matrix
A, where the columns are the N eigenvectors of Xi.. The
matrix A is used (as indicated in (1)) to design the coupling
network A in Fig. 4. From (3), Rin +jX,n = AZ’ At, where Z’
is the impedance matrix of the network inside the dotted lines.
Equating imaginary parts and solving for X’ (the imaginary
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Fig. 3. A cascade connection, pertaining to Theorem 1.
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Fig, 4. Definitions used in the design procedure.

part of Z’) yields X’ = AtXinA. X’ is a diagonal matrix
corresponding to the series reactive elements of Fig. 4.

R’, the real part of Z’, is determined as R’ = At RiTIA.

This matrix is positive real and symmetric. The matrix can
be diagonalized by a second orthogonal matrix B, where
the columns of 1? are the eigenvectors of R’. The matrix
B is used to design the coupling network B of Fig. 4. The
resistances terminating Network B are the eigenvalues of R’

corresponding to the eigenvectors, which make up the columns
of B.

So far the derivation follows an existing design procedure
[2] that realizes the coupling network with multiwinding trans-
formers (impractical at microwave frequencies). Our novel
approach utilizes repeated applications of Givens rotations as
shown in the Appendix, The Appendix furthermore shows how
these rotations can be implemented by at most N(N – 1)/2
cascaded four-port directional couplers.

Our technique thus represents a new, practical approach

to the design of lossless matching networks at microwave
frequencies. To our knowledge, no other procedure for de-
signing practical coupling networks matching arbitrary N by
N admittance matrices to diagonal admittance matrices at
microwave frequencies has been documented in the literature.

The design procedure for realizing an arbitrary passive
impedance matrix Z,. = Rin + jXin may thus be summarized
as follows:

1)

2)

3)

4)

Compute the eigenvalues and eigenvectors of Xin.
Design the transformation network whose scattering

matrix S~ and series reactive elements Xi correspond
to the eigenvectors and eigenvalues of X,..
Compute the eigenvalues and eigenvectors of R’ =
A“RinA.
Design the transformation network whose scattering
matrix is SB and resistive elements, Ri corresponding
to the eigenvectors and eigenvalues of R’.
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In order to implement the design. one needs directional

couplers with an .$ ’-matrix of the form

()o .-l
‘= .4t (1 ‘ith‘4=(:::::) ‘6)

Lumped-element directional couplers with purely imaginary
.4-matrices have been shown in [7] to have the topology of
Fig. 5.

A cascade connection of the two networks shown in Fig. 5
implements S-matrices of the form of (6) in which .4 is
purely real. To see this, consider S-matrices of the form of (6)
describing Iossless networks. The constraints on the phases of
the scattering coefficients of such networks are

If, in addition,
sj~= –s~~,

and

the circuit parameters are
then

(jl:j = (/)14+ l(nr

For the networks shown in Fig. 5, S’lJ =

h any integer. (7)

constrained to insure

1)~’s~~l)-1,5,412(8)

–,]1)1 where /J1 is the

normalized susceptance linking ports 1 and 4. Using Fig. 5(a)
the A-matrix becomes

.l(, =:
(

{OS(141) sill(fll)

:) )–sin(6’1) (os(fll)

For Fig. 5(b), the A-matrix becomes

Al, = ,j
(

(:os( 02 ) sin( ti~)

)–siu(6~) c(M(O~)

Cascading the two circuits yields the desired S-matrix

with

.4,,,, =
(

(os(fll + OZ) sill(fll + fl~)

)–sin(fll + 0~) cos(6’1 + d?) “

Hence, one may construct lumped-element four-port direc-
tional couplers having the form of (6) and thereby build up

the S-matrix needed to transform the terminating Impedances.
Although the reason for cascading the two circuits was to
provide a real S-matrix, the resulting circuit has an extra
branch whose additional degrees of freedom may be used to
increase the bandwidth [7].

IV. DESIGN EXAMPLE OF COUPLING NETWORK

FOR A FOUR-ELEMENT LINEAR ARRAY

In order to illustrate the realization technique with a mean-

ingful example, a network will be designed that provides a

conjugate match to a specified antenna admittance matrix.

For the antenna array, we choose four slots of 0.7~ spacing
oriented broadside to the axis of the array. For a stripline-
fed cavity-backed slot, one can adjust the feed-point to match
the feedline characteristic impedance to the slot impedance at
resonance. This is equivalent to coupling the 4 x 4 antenna
impedance matrix to the four feed lines through a wideband
transformer.

Assuming each slot has an identical aperture source dis-
tribution, the admittance matrix has Toeplitz symmetry. i.e.,
the elements of the admitumce matrix have the form: I; ~ =

l;+, ~+1 for /, .) < N – 1 and all self-terms are identical. The
inverse of the Toeplitz (symmetric) matrix is centrosymmetric,
i.e., it is symmetric about the main and cross diagonals (a
persymmetric matrix has only the latter symmetry). Cen-
trosymmetry reduces the number and complexity of directional
couplers required to diagonalize the impedance matrix.

The conjugate load that matches the four slot antenna at
the center frequency of 3 GHz is described by the following
Toeplitz matrix normalized to the characteristic admittance of
the feed line

J’;n =

1.0000 –.34)0 .0820 .0820”

-.3400 1.0000 – .3400 .ng~~

.0820 – .3400 1.0000” – .3-N(I
L .08z0 .0820 –.:3400 1.0000

[

() .0060 .1600” –.0900”
.0060 0

+,/
.0060 .1600

.1600 .(1060 O .()()60 (9)

L-moo .16~0 .I.)060 O d

Since our design procedure for realizing this load is in terms
of z,,,.1;,,must first be inverted, producing the normalized
impedance matrix

[

1.1099 .3796 –.0105” –.1349
,:379(5 ljjl~ ‘j(jg~ –.010!5z,,,= –.0105 ,:3(j98l,~jl~ .3796

–.1349 –.010.5 .3796 1.1099 1

[

–.0134–.0575–.2060–.0250-
–.0575– .0575–.1529 – .2060”

+j —.2060 –.1529 –,0575 –.057.5

–.0250 –.2060 –.0575 –.o134-

(10)

The four step design procedure yields the following.
Step I: Coupling network .4, described by S.A, can be

computed from an elgenvalue analysis of the reactive part
of the impedance matrix. It should have an .4 matrix of the
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eigenvectors of the imaginary part of Z,. as shown in (1)

[

0.4153 0.5638 –0.5723 0.4268
~ =: 0.5723 –0.4268 0.4153 0.5638

0.5723 0.4268 10.4153 –0.5638 “
(11)

0.4153 –0.5638 –0.5723 –0.4268

The serlles reactance between network A and network B are
given by the eigenvalues

Xl = –.4016

Xz = –.1008
(12)

X3 = +.1529

Xi = +.2078.

Step 2: The scattering matrix S.4 is readily obtained from
(6), gerierating

[1
s~= :t :. (13)

In order to design network A, the upper right-hand corner
of this matrix must be factored into six matrices. Using the
method of the Appendix the result is

[

0.4153 0.5638 –0.5723 0.4268
A = 0.5723 –0.4268 0.4153 0.5638

0.5723 0.4268 0.4153 –0.5638
0.4153 –0.5638 –0.57’23 –0.4268 1
[
0.5873 –0.8094 O 0

_ 0.8094 0.5873 0 0—
o 0 1.0000 0

0 0 0 1.0000 1
[

0.7773 0 –0.6291 O
0 1.0000 0 0

x 0.6291 0 0.7773 0
0 0 () 1.0000 1

[
0.9097 0 0 –0.4153

o 1.0000 0 0
x

o 0 1.0000 0
0.4153 0 0 0.9097 1
[
1.0000 0 0 0

0 –0.9008 –0.4342 O
x o 0.4342 –0.9008 O

0 0 0 1.0000 !

[

1.0000 0 0 0
0 0.7848 0

x
0.6198

0 0 1.0000 0
0 –0.6198 O 0.7848 1

‘x

1.0000 0 0 0-
0 1.0000 0 0
0 0 –0.5978 0.8016 “

(14)

100 –0.8016 –0.5978

Each of the six matrices can be realized with one four-port
directional coupler and two straight through connections. For
example, the scattering matrix of the network corresponding
to the second factor on the right-hand side of ( 14) is as shown
in (15) at the bottom of the page. The network realization of
the above scattering matrix is shown in Fig. 6.,

Six such networks, cascaded, make up the network A of

Fig. 4.
Step 3: After network A is realized, the real part of the

input impedance can be realized by solving for the eigenvalues
and eigenvectors of

[

1.7295 0.0000 0.1785 0.0000

AtRinA =
0.0000 0.7262 0.0000 0.2951 10.1785 0.0000 0.8367 0.0000 “

(16)

0.0000 0.2951 0.0000 1.3702

The matrix has many zero elements because of the centrosym-
metry of the original impedance matrix. The upper right-hand
corner of the scattering matrix for network B is given by the
eigenvectors of the matrix in (16). The result is

[

–0.9820 0.1890 0.0000 0.0000

B=
0.0000 0.0000 –0.3625 –0.9320

–0.1890 –0.9820

1
0.0000–0.0000“ (17)

0.0000 –0.0000 –0.9320 0.3625

Step 4: The terminating resistances of the coupling network
B are specified by the following eigenvalues

RI = 1.7639

Rz = .8023
(

R3 = 1.4850

Rd = .6114.

The final realization is shown in Fig. 7. The matrix in (17)
is factored to find the division ratios for the directional
couplers. Following the procedure of the Appendix leads to
the following six rotation matrices, whose product equals B

[

–1.0000 o 0 0
B= ;

–1.0000 o 0
0 1.0000 0

0 0 0 1.0000 1

(18)

o
0
0
0

0.7773
0

-0.6291
0

0
0
0
0
0

1.0000
0
0

0
0
0
0

0.6291
0

0.7773
0

0
0
0
0
0
0
0

1.0000

0.7773
0

0.6291
0
0
0
0
0

0-
1.0000

0
0
0
0
0
0

-0.6291
0

0.7773
0
0
0
0
0

0
0
0

1.0000
0
0
0
0

(15)
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A -!+4 port network. consisting of a directional coupler and two
connections.

I
().98’2() (1 0.1890 0

0 1.0000 0 0
x

–0.1890 o 0.9820 0
0 0 01 1

[

1.0000 () o 0
0 1.0000 0 0“ 1

I
1.0000

0
x

o

()

[1.0000
()

x n
Lo
rl.0000

I
o

x
(1

o 1.0000 0
() (1 1.00001
0 0 0
0 1.0000 0

–1.0000 o 0
(1 () 1.0000 1
0 0 0

1.0000 0 ()
o 1.0000 0
0 () 1.00001
0 0 ()

1.0000 0 ()
(1 0.3625 1–0.9320 “

(19)

1.6114

Fig 7 A realization of the couphng network whose admittance
one–four is (9)

The eigenvector matrix A was factored as

I

0.4153 –0.57’23 –0.4268 –0.5638
0.5723 0.4153 –0.5638 0.4268
0.5723 0.4153 0.5(538 –0.4268
0.1153 –0.5723 0.4268 0.5638 1

=.4= .41x A2 x.43x.44

where

:

1.0000 0 0 0
Al= ; 0.7071 –0.7071 o

0.7071 0.7071 ()
o 0 () 1.0000 1

rO.7071

10.7071

[0.5873
~3 = 0.8094

0
1 ()

F1.0000

() o –0.7071
1.0000” () ()

o 1.0000 0
0 0 ().7071

–0.809-4 o 0
0.5873 0 0

0 1.0000 0
0 0 1.0000”

0 0 0
1.0000 0 0

0 0.7973 –0.6035
o 0.6035 ().7973

x pcrrts

Loo –0.9320 0.362.5 J The eigenvectors and eigenvalues of AtR,.A were found, and

the matrix of ei.genvectors D was factored as

I

0.9820 –0.1890 o 0
0.1890 ().9820 o 0

Note that the identity matrices are implemented as simple () o 0.9:320 –0.3625

straight through connections and therefore not shown in Fig. 7. (1 o 0.3625 0.9320

The scattering parameters of each of the six directional =B=B1x B2.

couplers are embedded in the appropriate submatrlces of ( 19) where
(see Fig. 6.) In Fig. 7, the SIXdirectional couplers of Net .4 are

i

0.98’20 –0.1890 O 0
labeled ,41 through .46. and the directional couplers of network B1 = 0.1890 0.9820 0 0

B are labeled B1 through B6. (B3 and B5 are missinz since o 0 1.0000 0
they correspond to iden~ity matrices in (19). ) Loo() 1.00001

When the impedance specification has centro-symmetry [8],

[

1.0000 () o 0
as in this example, one can reduce the number of directional

B2= :
1.00(00 o 0

couplers used in the realization. To demonstrate this point, o 0 93~o

1

–0.3625
the impedance of ( 10) is realized using only six couplers, i.e., o 0 0.3625 0.9320
one half of those required in an arbitrary 4x 4 matrix lacking
centrosymmetry. The corresponding reduced design is shown in Fig. 8.
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Fig. 8.

Fig, 9.

10
— -jXa = j.401 & 1.7639

A3 jxb= j,1529 B1 .8023
2 c--

Al A2
— j%= j,2078 — 1.4850

30-- I

4,-
‘4 j%= -j.l 008 ‘2 .6114

1
Realization of Fig. 7 coupling network exploiting symmetry.

== =

J{ L1

Port 1

● 1(

L7

cl

+[ -- -’

C5

C3 L6
Port 2

1

L2
C7 TF42C4 ~ ~==

Schematic diagram of the four-port couplers used in Fig. 8.

TABLE I
ELEMENTVALUESFOR THE FOUR-PART COUPLERS.

CAPACITANCE IN pF, INDUCTANCEIN nH

F “%) %5 O?13 !!!589 %64 :

E ;

L2 0:406 0:394 0:419 0.487 0.455
L3, L7 1.39 1.17 1.67 5.59 2.88
cl,C5 2.0 2.41 1.69 0.503 0.978
C2,C3 4.73 5.03 5.28 5.21
L4 OY9 0.584 0.833 2.80 1.44
C4 - 4.06 4.82 3.38 1.01 1.96
L5,L6 0.57 0.596 0.560 0.533 0.540
6 6.93 7.14 6.72 5.78 6.19

C7 2.8 2.32 3.34 4.78 4.24

V. CIRCUIT SIMULATIONAND DESIGN VERIFICATION

The block diagram of Fig, 8 can be realized by designing

the six four-port couplers, Al, A2, A3, A4, Bl, and B2.

To demonstrate the validity of the design procedure, the

methods of [5] were followed to design the six directional

couplers for operation at the center frequency of 3.0 GHz. The

couplers were designed with lumped rather than distributed

elements in order to insure the smallest possible physical size
for the overall circuit. A characteristic impedance of 10 ohms

was chosen for the circuit. This allows for practical values of

lumped inductors and capacitors. By altering the feed point of

the antenna slots, the antenna can be matched to the coupler

at 3.0 GHz. The 50-ohm impedance of the source circuitry

can be matched to the necessary terminating resistance of the
circuit with quarter wave matching transformers. Ea~h coupler

is realized as shown by the schematic diagram of Fig. 9, and

the component values for the couplers are given in Table I.

Note tlhat Fig. 8 shows impedances normalized to one ohm,

whereas element values listed in Table I and below assume

a ten ohm characteristic impedance. Element values for the

series admittances of Fig. 8 from top to bottom.

X. is capacitive with a value of 13.2 pF.

X~ is inductive with a value of 81.1 pH.

X. is inductive with a value of 110 pH.

Xd is capacitive with a value of 52.6 pF.

The program TOUCHSTONE was used to determine the
frequency characteristics of the S-matrix of the lossless eight
port network consisting of the six four-port couplers and the
four reactance.

The admittance of the previously mentioned slot array
antenna was calculated over a 10% bandwidth around the
center frequency, using a separate electromagnetic simulation
program. From this data the S-matrix was computed.

To investigate the performance of this coupling network in a
transmitting mode, we consider a network connection as shown
in Fig. 2. The excitation can be represented as four isolated
voltage sources, each with a 50-0 series resistance. In the
simulation, we assume that the impedance transformers used
to match the excitation characteristic impedance to the coupler
circuitry have sufficient bandwidth that their contribution to
the frequency response of the circuit is negligible.

Note that a perfect coupling network would extract the
maximum power possible from each of the sources, which in

this case would be ~ watts, where VRN1s is therms voltage
of the source and 20 = 50 ohms, The coupling network
has been designed for a perfect match at 3 GHz, but will
develop mismatch as the frequency varies about this point. To
quantify the bandwidth performance of the coupling network,
we considered five different voltage excitation vectors. These

excitations are: each of the four-ports being driven separately
by a one volt source and all four-ports driven together by four
co-phasal one-half V sources, all in phase.

As Fig. 10 shows, the variation in power flow over a 10%
bandwidth is different for each of the five excitations, ranging
from less than l–5dB. A future study is planned to investigate
the sensitivity of the power flow to variations in the component
values of the couplers.

VI. CONCLUSION

The paper develops a new algorithm for the design of

lossless multiport matching networks based upon repeated ap-
plications of Givens rotations. The design technique parallels
the procedure proposed by Carlin and Youla, but differs in its
implementation by avoiding multiport transformers, which are
impractical at microwave frequencies.

To illustrate the procedure. a coupling network for a four-
element antenna array has been designed with six directional
couplers, in order to maximize the power flow from four
isolated transmitters into the antenna. Lumped elements were
used in the design of the couplers. To validate the design,
the antenna-coupler system has been simulated and its per-
formance assessed over a 10% bandwidth. We expect the
impressive bandwidth performance of our example to be
the case with most designs obtained by this novel design
methodology.
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APPENDIX

PROOF THAT No MORE THAN IV(f’V – 1)/2

DIRECTIONAL COUPLERS ARE NEEDED TO REALIZE

EACH OF THE 2’N BY 2JV NETWORKS .4 .4ND D

It will be shown that interconnections of networks of

directional couplers. each with two input ports and two output

ports, described by S-matrices of the form

s=
()

o
ms(y

() cm(p) sin(p)
() –sin( p) COS(p)

(Al)
–sin(p) O 0

) Cos(y) o 0

can produce a 2A-Port network with S-matrices of the form

needed for networks .4 and B.

$.4 and SB, describing networks .4 and D, respectively, will
be realized as cascades of N + N port networks, an example
of which is shown in Fig. 6, consisting of one 2 + 2 port
directional coupler and (N – 2 ) + (N – 2) through connections.

The f-matrix of the network of Fig. 6 is of the form of

(1). The .4-matrix is diagonal for the row and columns where
the ports are through. and has the entries of (Al) in the rows
and columns corresponding to the directional coupler. For the
example of Fig. 6, as in (A2) shown at the bottom of the page.
Since the JV+ N port networks have an S-matrix of the form
of ( 1). the S-matrix of several such networks in cascade can
be shown to be

[
SG,,+J = ‘) .’!+(,t,a,

.Ll:ota, o 1 (A3)

Where AtOt,l is the product of individual .4 matrices of the
N + N port networks

.-i,,(,,a] = .A1.lq ~~ ‘-in. (A4)

Our design strategy is to find a decomposition of the upper
right-hand quadrant of S4 or SB into a product of matrices

that are like the upper right-hand quadrant of (A2).
In the following, we provide this decomposition, by showing

that, for an S-matrix of the form in (A3), the N by N
real orthogonal matrix .4t,0td1 may be expressed as a product
of N(N – 1)/2 matrices, each of which only involves two
coordinate axes.

Consider the two-dimensional (2-D) unit vector in the r-

Y plane. ~(fl) = cos(fl).t + sin(fl)~, where :; and ~ are unit

vectors along the I- and y-axes. Such an arbitrary unit vector

may be rotated to lie along the :r-axis with the orthogonal

transformation matrix R( – ()), where

R(–(1) =
(

cos(fl) sin(fl)

–siu(o) cos(())
)

i.e.,

()-(

1 cos(fl) sin(f))

)( )

COS(8)
() – -sin(H) cos(fl) sin(fl)

(A5)

Now suppose we have an N-dimensional unit Z vector and
select an arbitrary 2-D subspace containing a nonnull projec-
tion of 7. Applying a matrix of the form shown in (Al), one
can rotate the projection of F to lie along either axis of the
subspace. By repeated rotations (for a total of at most N – 1),
one can transform an arbitrary vector to lie along any of the
N axes in the space.

Now consider the N by N real orthogonal matrix .4. Since it
is orthogonal, .4 may be expressed in terms of an orthonormal
set of column vectors, i.e., .4 = (7122 . . . F’~-l Z,v). As has

been shown, the first column vector may be rotated to the
first axis (a one in the first row and zeros elsewhere) by
multiplication with N – 1 rotation matrices G( 1, m, –(llm ),

where G(l, m –6J1m ) is an N by N unit matrix, except
for the 1, rrl subspace, which has the form of (A5). These
operations are known as Givens rotations [1]. Application of
G( 1, m. – 01,,,) annihilates the m,th element in the first column
of A.

Hence we have’ Z’l = ~~n=v G(l, m, –flln,)~l with 7’1
the unit vector along the first axis, having a one in the first
row and zeros elsewhere. But the product of two orthogonal

I NOt~ that the tn~trlces arc rnultlpllcd from left to right, stwtmg with the

first index of the product sign,

o ()

Uo

() ()

00
Cos(p) o

0.1
sin(p) O

00

0
0
()

o
–sin(p)

o
COS(y)

o

0
()

o
()

o
0
0
1

Cos(p)
o

-sin(p)
o
0
0
0
0

0
1

0
0
0
0
0
0

sin(p)

o

(’OS(9)

o

0

0

0
0

()

o
0
1

0
0
0
0.

(A2)
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matrices is also orthogonal, so that the transformed vectors

~ = ~~q= ~ G( 1, m, ~O1m)Zi form an orthonormal set.
Since only E“l has a nonzero entry in the first row.

transformed A has the form
10 . 0

( )

GIA = 0
Al

o

the

A6]

where
2

m.N

Repeating the process on the N – 1 dimensional subspace
corresponding to Al with at most N – 2 rotations one can
rotate ;rz to lie along the second axis, so that

10 . 0

[ 1

01 ~ o
G2G1A = O 0 (A7)

~ AZ

00
where

nt. jv

Continuing through the remaining subspaces, one finally ob-
tains

(-)~ G~ A = fi ‘fi G(i, nt, –&,)A = 1. (A8)
azN–1 ~=N–1 ~,=N

But R(0)R( –0) = 1, so that (A8) handily inverts to the form

N–1 N

A = ~ ~ G(i, m, Oim)
‘i=l Tn=i+l

which is the desired result.
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